Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell Death Dis ; 15(4): 265, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615022

RESUMO

Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Apresentação de Antígeno , Anticorpos , Citometria de Fluxo , Receptores de Antígenos de Linfócitos T , Neoplasias/terapia
2.
Genomics ; 115(6): 110728, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858843

RESUMO

The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.


Assuntos
Antocianinas , Transcriptoma , Antocianinas/genética , Temperatura , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética
3.
Appl Opt ; 62(17): 4642-4649, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707162

RESUMO

This paper presents the optical design of a high-resolution double-grating spectrometer for extracting the multiple lines in the Stokes or anti-Stokes branch of the pure rotational Raman spectra of nitrogen. The spectrometer is composed of collimating and focusing mirrors, two reflective gratings, and a linear detector. The structural parameters were calculated using geometric configuration, dispersion, and aberrational theory, and conditions for first-order correction of keystone distortion with divergent grating illumination were derived. Based on this method, we simulated a spectrometer with a 16-channel linear array photomultiplier tube, resulting in uniformly distributed single-branch lines on each detector channel. The resolution reached 0.225 nm per channel, and the keystone distortion was less than 0.7%. The spectrometer avoids the interference of elastic signals by not detecting them, enabling the extraction of atmospheric temperature profiles via separated single-branch lines with high precision. Our design provides a promising solution to extract atmospheric temperature profiles for pure rotational Raman lidar.

4.
Plant Physiol Biochem ; 201: 107874, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429215

RESUMO

Seed germination directly affect maize yield and grain quality. Low-temperature reduces maize yield by affecting seed germination and seedling growth. However, the molecular mechanism of maize seed germination under low-temperature remains unclear. In this study, the transcriptome data of two maize inbred lines SCL127 (chilling-sensitive) and SCL326 (chilling-tolerant) were analyzed at five time points (0 H, 4 H, 12 H, 24 H, and 48 H) under low-temperature conditions. Through the comparison of SCL127-0 H-vs-SCL326-0 H (Group I), SCL127-4 H-vs-SCL326-4 H (Group Ⅱ), SCL127-12 H-vs-SCL326-12 H (Group Ⅲ), SCL127-24 H-vs-SCL326-24 H (Group Ⅳ), and SCL127-48 H-vs SCL326-48 H (Group Ⅴ), a total of 8,526 differentially expressed genes (DEGs) were obtained. Weighted correlation network analysis revealed that Zm00001d010445 was the hub gene involved in seed germination under low-temperature conditions. Zm00001d010445-based association analysis showed that Hap Ⅱ (G) was the excellent haplotype for seed germination under low-temperature conditions. These findings provide a new perspective for the study of the genetic architecture of maize tolerance to low-temperature and contribute to the cultivation of maize varieties with low-temperature tolerance.


Assuntos
Germinação , Zea mays , Germinação/genética , Zea mays/genética , Temperatura , Sementes/genética , Plântula
5.
Int J Biol Macromol ; 247: 125693, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37419268

RESUMO

The phytochrome-interacting factors (PIFs) function crucially in multiple physiological processes, but the biological functions of some PIFs remain elusive in some species. Here, a PIF transcription factor NtPIF1 was cloned and characterized in tobacco (Nicotiana tabacum L.). The transcript of NtPIF1 was significantly induced by drought stress treatments, and it localized in the nuclear. Knockout of NtPIF1 by CRISPR/Cas9 system led to the improved drought tolerance of tobacco with increased osmotic adjustment, antioxidant activity, photosynthetic efficiency and decreased water loss rate. On the contrary, NtPIF1-overexpression plants displays drought-sensitive phenotypes. In addition, NtPIF1 reduced the biosynthesis of abscisic acid (ABA) and its upstream carotenoids by regulating the expression of genes involved in ABA and carotenoids biosynthetic pathway upon drought stress. Electrophoretic mobility shift and dual-luciferase assays illustrated that, NtPIF1 directly bind to the E-box elements within the promoters of NtNCED3, NtABI5, NtZDS and Ntß-LCY to repress their transcription. Overall, these data suggested that NtPIF1 negatively regulate tobacco adaptive response to drought stress and carotenoids biosynthesis; moreover, NtPIF1 has the potential to develop drought-tolerant tobacco plants using CRISPR/Cas9 system.


Assuntos
Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Carotenoides , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
6.
Org Lett ; 25(30): 5671-5675, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37486621

RESUMO

A Rh-catalyzed regioselective, stereoselective carbocyclization/borylation of acrylate-containing 1,6-enynes was described, which offers a general and practical method for constructing versatile and densely functionalized pyrrolidines with the (Z) geometry or the uncommon (E) geometry at the double bond with different substituents of the alkyne, with sterically hindered and conjugative aryl groups favoring the latter, featuring a tetrasubstituted vinyl boronate, containing an all-carbon quaternary stereocenter.

7.
Bioresour Technol ; 384: 129370, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343805

RESUMO

This work aimed to study an integrated pretreatment technology employing p-toluenesulfonic acid (TsOH)-catalyzed liquid hot water (LHW) and short-time ball milling for the complete conversion of poplar biomass to xylooligosaccharides (XOS), glucose, and native-like lignin. The optimized TsOH-catalyzed LHW pretreatment solubilized 98.5% of hemicellulose at 160 °C for 40 min, releasing 49.8% XOS. Moreover, subsequent ball milling (20 min) maximized the enzymatic hydrolysis of cellulose from 65.8% to 96.5%, owing to the reduced particle sizes and cellulose crystallinity index. The combined pretreatment reduced the crystallinity by 70.9% while enlarging the average pore size and pore volume of the substrate by 29.5% and 52.4%, respectively. The residual lignin after enzymatic hydrolysis was rich in ß-O-4 linkages (55.7/100 Ar) with less condensed structures. This lignin exhibited excellent antioxidant activity (RSI of 66.22) and ultraviolet absorbance. Thus, this research suggested a sustainable waste-free biorefinery for the holistic valorization of biomass through two-step biomass fractionation.


Assuntos
Lignina , Populus , Lignina/química , Glucose , Biomassa , Celulose/química , Hidrólise , Água/química , Catálise
8.
BMC Plant Biol ; 23(1): 204, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076827

RESUMO

BACKGROUND: Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS: In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION: We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.


Assuntos
Glicosiltransferases , Quercetina , Flavonoides/metabolismo , Flavonóis , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/metabolismo , Estresse Fisiológico/genética , /metabolismo , Uridina/metabolismo , Difosfato de Uridina/metabolismo
9.
Appl Opt ; 61(17): 5067-5075, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256185

RESUMO

A 64-channel detection system for laser-induced fluorescence (LIF) detection at the cell level is established and applied to single event counting. Generally, fluorescence detection at the cellular level requires a dyeing label to enhance the scattered light intensity for the photodetector. However, the dyeing labels, such as fluorophores, probes, and dyes, complicate sample preparation and increase cytotoxicity in the process. Therefore, label-free detection becomes essential for in vivo research. The presented 64-channel detection system is designed for label-free detection with the ability to record feeble emissions. Two linear photodetector devices are included in the system, extending the wavelength detection range to 366-680 nm with an improved spectral resolution at an average of 4.9 nm. The performance of the system was validated by detecting unlabeled human hepatocytes (L-02) and other cell-level biologic samples. In addition, the 64-channel detection system was also used for particle counting with a quartz microfluidic chip. The counting method is based on fluorescence spectra differs from those of other devices (i.e., flow cytometry and cell-sorting equipment), which use isolated irradiance intensities.


Assuntos
Produtos Biológicos , Técnicas Analíticas Microfluídicas , Humanos , Fluorescência , Quartzo , Microfluídica , Corantes Fluorescentes
10.
Org Lett ; 24(38): 7021-7025, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36129417

RESUMO

A Pd-catalyzed borylsilylative cyclization of 1,6-allenynes with PhMe2SiBpin was developed. This method provides a practical and general method to afford the carbocycles and heterocycles bearing silyl and boryl groups with excellent regioselectivities and stereoselectivities in high to excellent yields.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121260, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447557

RESUMO

We developed a dual-wavelength-excitation aerosol fluorescence spectra detection device prototype. In our system, the 263 nm and 355 nm lasers are used to sequentially excite the fluorescence of aerosol stream, which is located spatially and temporally by two crossed infrared lasers; a bifurcated fiber bundle is applied to receive the fluorescence spectra of 274-463 nm and 374-565 nm. Besides, with a 32-channel photomultiplier tube as detector, a self-developed combined spectrometer with Czerny-Turner design is employed to detect the two band spectra in a preset timing sequence. Experiments show that the system can detect the fluorescence spectra, after dual-wavelength-excitation, of three intrinsic fluorophore samples and three bioaerosol samples.


Assuntos
Lasers , Luz , Aerossóis , Espectrometria de Fluorescência
12.
Appl Opt ; 61(10): 2881-2887, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471365

RESUMO

The gain ratio is a critical parameter in a polarization Mie lidar. Calibrating the gain ratio is essential in aerosol classification studies. We developed a ray-tracing-based simulation method to investigate the impact of mounting errors on the gain ratio. In this method, a computational model for each element of the lidar was built, and Zemax was used to simulate the lidar receiver to obtain the optical gain ratio by theoretical calculations. This method can analyze the influence of each element's mounting errors and offer a theoretical foundation for the machining and mounting accuracy of the lidar design. The correctness of the model was verified by applying it to a single-wavelength polarization Mie Raman lidar.

13.
Appl Opt ; 61(12): 3510, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471449

RESUMO

This publisher's note serves to correct an error in Appl. Opt.61, 2881 (2022)APOPAI0003-693510.1364/AO.453852.

14.
Opt Express ; 30(1): 180-194, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201198

RESUMO

Wind vector estimation method with high accuracy in the low signal-to-noise ratio region improves the performance of pulsed coherent Doppler lidar. The key to improving accuracy is to process the incorrect radial wind estimates or the distorted power spectra better. The smoothed accumulated spectra based weighted sine wave fitting method proposed here minimizes the effects of bad radial wind estimates by considering both signal intensity and wind spatial continuity. Leveraging spatial continuity from smoothed accumulated spectra, the weight coefficients and real-time wind vector profiles can be quickly determined with non-looped operations. Simulations and field experiments showed that the proposed method provides comparable or even slightly better quality and more available wind vector estimates than the filtered sine wave fitting method.

15.
BMC Genomics ; 23(1): 50, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35026983

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in response to abiotic stresses in plants, by acting as cis- or trans-acting regulators of protein-coding genes. As a widely cultivated crop worldwide, maize is sensitive to salt stress particularly at the seedling stage. However, it is unclear how the expressions of protein-coding genes are affected by non-coding RNAs in maize responding to salt tolerance. RESULTS: The whole transcriptome sequencing was employed to investigate the differential lncRNAs and target transcripts responding to salt stress between two maize inbred lines with contrasting salt tolerance. We developed a flexible, user-friendly, and modular RNA analysis workflow, which facilitated the identification of lncRNAs and novel mRNAs from whole transcriptome data. Using the workflow, 12,817 lncRNAs and 8,320 novel mRNAs in maize seedling roots were identified and characterized. A total of 742 lncRNAs and 7,835 mRNAs were identified as salt stress-responsive transcripts. Moreover, we obtained 41 cis- and 81 trans-target mRNA for 88 of the lncRNAs. Among these target transcripts, 11 belonged to 7 transcription factor (TF) families including bHLH, C2H2, Hap3/NF-YB, HAS, MYB, WD40, and WRKY. The above 8,577 salt stress-responsive transcripts were further classified into 28 modules by weighted gene co-expression network analysis. In the salt-tolerant module, we constructed an interaction network containing 79 nodes and 3081 edges, which included 5 lncRNAs, 18 TFs and 56 functional transcripts (FTs). As a trans-acting regulator, the lncRNA MSTRG.8888.1 affected the expressions of some salt tolerance-relative FTs, including protein-serine/threonine phosphatase 2C and galactinol synthase 1, by regulating the expression of the bHLH TF. CONCLUSIONS: The contrasting genetic backgrounds of the two inbred lines generated considerable variations in the expression abundance of lncRNAs and protein-coding transcripts. In the co-expression networks responding to salt stress, some TFs were targeted by the lncRNAs, which further regulated the salt tolerance-related functional transcripts. We constructed a regulatory pathway of maize seedlings to salt stress, which was mediated by the hub lncRNA MSTRG.8888.1 and participated by the bHLH TF and its downstream target transcripts. Future work will be focused on the functional revelation of the regulatory pathway.


Assuntos
RNA Longo não Codificante , Estresse Salino , Zea mays , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA de Plantas , Plântula/genética , Zea mays/genética
16.
Appl Opt ; 60(21): 6140-6146, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613278

RESUMO

The laser-induced fluorescence (LIF) technique, which has been widely used for food testing, can be combined with various algorithms to classify and recognize different kinds of honey. This paper proposes the Kolmogorov-Smirnov test-Gaussian mixture model (KS-GMM) algorithm, which is coupled with the LIF technique to realize accurate classification and recognition of different types of pure honey. The experiments are designed and carried out to obtain a set of LIF spectrum data from various honey and syrup samples. The proposed KS-GMM algorithm is applied for classification and recognition, with GMM, k-nearest neighbor (kNN), and decision tree algorithms as cross-validation methods. By comparing recognition results of training sets containing different amounts of data, it is found that the KS-GMM algorithm exhibits a maximum recognition accuracy of 96.52%. The research results prove that the KS-GMM algorithm outperforms, to the best of our knowledge, the other three algorithms in classifying and recognizing the honey types.


Assuntos
Algoritmos , Mel/classificação , Lasers , Distribuição Normal , Espectrometria de Fluorescência , Estatísticas não Paramétricas , Fluorescência , Mel/análise , Reprodutibilidade dos Testes
17.
PeerJ ; 9: e11707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249517

RESUMO

As one of the major crops, maize (Zea mays L.) is mainly distributed in tropical and temperate regions. However, with the changes of the environments, chilling stress has become a significantly abiotic stress affecting seed germination and thus the reproductive and biomass accumulation of maize. Herein, we investigated five seed germination-related phenotypes among 300 inbred lines under low-temperature condition (10 °C). By combining 43,943 single nucleotide polymorphisms (SNPs), a total of 15 significant (P < 2.03 ×  10-6) SNPs were identified to correlate with seed germination under cold stress based on the FarmCPU model in GWAS, among which three loci were repeatedly associated with multiple traits. Ten gene models were closely linked to these three variations, among which Zm00001d010454, Zm00001d010458, Zm00001d010459, and Zm00001d050021 were further verified by candidate gene association study and expression pattern analysis. Importantly, these candidate genes were previously reported to involve plant tolerance to chilling stress and other abiotic stress. Our findings contribute to the understanding of the genetic and molecular mechanisms underlying chilling germination in maize.

18.
Appl Opt ; 60(14): 4120-4126, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983164

RESUMO

Accurate and rapid spectrum fitting is very important for quantitatively analyzing laser-induced breakdown spectroscopy (LIBS). The Voigt function is often used to fit LIBS spectral lines. We propose a new approximate Voigt function formula. Based on the classic Lorentz-Gauss linear combination formula, a summation term was added that contained a specific convolution operation to improve the Voigt function's calculation and fitting accuracy. This formula can be used for the approximate calculation of the Voigt function with an overall accuracy of 0.31% and a full width at half-maximum internal accuracy of 0.25% when the ratio of Lorentzian linewidth to Gaussian linewidth is 1:1. The formula was then applied to LIBS data processing to fit four element spectral lines of calcium (Ca-393.37, 396.85, and 422.67 nm) and potassium (K-766.49 nm). The fitting results showed that this new approximate formula could fit at least seven data points, and compared with the complex plane partition method and the classic linear combination formula, the new formula had better fitting speed and accuracy.

19.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917729

RESUMO

Although it is quite challenging to image and analyze the spatial distribution of bioaerosols in a confined space, a three-dimensional (3D) modeling system based on the planar laser-induced fluorescence (PLIF) technique is proposed in this paper, which is designed to analyze the temporal and spatial variations of bioaerosol particles in a confined chamber. The system employs a continuous planar laser source to excite the fluoresce, and a scientific complementary metal oxide semiconductor (sCMOS) camera to capture images of 2048 × 2048 pixels at a frame rate of 12 Hz. While a sliding platform is moving back and forth on the track, a set of images are captured at different positions for 3D reconstruction. In this system, the 3D reconstruction is limited to a maximum measurement volume of about 50 cm × 29.7 cm × 42 cm, with a spatial resolution of about 0.58 mm × 0.82 mm × 8.33 mm, and a temporal resolution of 5 s. Experiments were carried out to detect the PLIF signals from fluorescein aerosols in the chamber, and then 3D reconstruction was used to visualize and analyze the diffusion of aerosol particles. The results prove that the system can be applied to clearly reconstruct the 3D distribution and record the diffusion process of aerosol particles in a confined space.

20.
Physiol Plant ; 170(4): 508-518, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32754968

RESUMO

The free moisture in crop kernels after being naturally dried is referred to as kernel moisture content (KMC). Maize KMC reflects grain quality and influences transportation and storage of seeds. We used an IBM Syn10 DH maize population consisting of 249 lines and an association panel comprising 310 maize inbred lines to identify the genetic loci affecting maize KMC in three environments. Using the IBM population detected 13 QTL on seven chromosomes, which were clustered into nine common QTL. Genome-wide association analysis (GWAS) identified 16 significant SNPs across the 3 environments, which were linked to 158 genes across the three environments. Combined QTL mapping and GWAS found two SNPs that were located in two of the mapped QTL, respectively. Twenty-three genes were linked with the loci co-localized in both populations. Of these 181 genes, five have previously been reported to be associated with KMC or to regulate seed development. These associations were verified by candidate gene association analysis. Two superior alleles and one favorable haplotype for Zm00001d007774 and Zm00001d047868 were found to influence KMC. These findings provide insights into molecular mechanisms underlying maize KMC and contribute to the use of marker-assisted selection for breeding low-KMC maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sementes/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...